HOBO ECH2O EC-5 Soil Moisture Smart Sensor
Features
- Measures a 0.3-liter volume of soil
- High-frequency (70 MHz) circuit provides good accuracy even in high-salinity and sandy soils
- Compatible with Onset stand-alone and web-based weather stations
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The Onsite ECH2O EC-5 soil moisture smart sensor offers a two-tine design for easy installation in in an affordable package. This sensor integrates the field-proven ECH2O EC-5 Sensor and a 12-bit A/D. It provides ±3% accuracy in typical soil conditions, and ±2% accuracy with soil-specific calibration. Readings are provided directly in volumetric water content. This sensor is designed to maintain low sensitivity to salinity and textural effects.
Measurement Range
In soil: 0 to 0.550(m³/m³)
Extended range: -0.401 to 2.574 m³/m³ (full scale)
The sensor is capable of providing readings outside the standard volumetric water content range. This is helpful in diagnosing sensor operation and installation. See User Manual for additional information.
Accuracy: ±0.031 m³/m³ (±3.1%) typical 0 to 50°C (32° to 122°F); ±0.020 m³/m³ (±2%) with soil specific calibration.
This is a system-level accuracy specification and is comprised of the ECH2O probe's accuracy of ±0.03 m³/m³ typical (±0.02 m³/m³ soil specific) plus the smart sensor adapter accuracy of ±0.001 m³/m³ at 25°C (77°F). There are additional temperature accuracy deviations of ±0.003 m³/m³ / °C maximum for the ECH2O probe across operating temperature environment, typical <0.001 m³/m³ / °C. (The temperature dependence of the smart sensor adapter is negligible.)
Resolution: 0.0007 m³/m³ (0.07%)
Soil probe dimensions: 89 x 15 x 1.5 mm (3.5 x 0.62 x 0.06 in.)
Weight: 180 grams (6.3 oz)
Decagon ECH2O probe part No.: EC-5
Sensor operating temperature: 0° to 50°C (32° to 122°F).
While the sensor probe and cable can safely operate at below-freezing temperatures (to -40°C/F) and up to 75°C (167°F), the soil moisture data collected at these extreme temperatures is outside of the sensor's accurate measurement range.
Volume of influence: 0.3 liter (10.1 oz)
Sensor frequency: 70 MHz
Bits per sample: 12
Number of data channels: 1
Note: A single smart sensor-compatible HOBO logger can accommodate 15 data channels and up to 100 m (328 ft) of smart sensor cable (the digital communications portion of the sensor cables)
Measurement averaging option: No
Cable length available: 5 m (16 ft)
Length of Smart Sensor network cable: 0.5 m (1.6 ft)
In The News
Angler-Driven Citizen Science: Monitoring Black Bass Populations in Arkansas
In Arkansas, the rugged terrain of the Ozark and Ouachita Mountains dominates the north and west, eventually yielding to the vast, fertile flatlands of the Mississippi River Delta to the east. Hundreds of reservoirs and lakes punctuate the landscape, while swift streams snake through the valleys and hills, eventually giving way to the slow-moving rivers and bayous in the south. The waterways of the state are teeming with life. Black bass dominate most of these ecosystems and have drawn anglers for centuries. The most sought-after fish in one of the country's most prominent fishing states, Arkansas treasures its black bass populations.
Read MoreNew Buoy Boosts White Lake’s Water Quality Monitoring and Conservation
White Lake in Western Michigan is a vestige of North America’s glacial past, and gets its name from an interpretation of the Indian, “Wabish-Sippe,” meaning the river with white clay. The twin towns of Whitehall and Montague, which nestle on White Lake’s shore, have shared a close connection with the lake since their foundation–from the growth of the lumbering industry, to industrializsation, the expansion of tourism, and most recently, environmental protection. The White Lake Association (WLA) was founded in 1988 by residents concerned about proposed development at the lake’s northern end.
Read MoreFlow Photo Explorer: Studying Flows in the Penobscot River Basin
The flow dynamics of rivers and streams play an essential role in the chemical and physical functions of aquatic ecosystems. In Maine, varying flows in the Penobscot River Basin have impacted the health of the ecosystem, water resource use, and habitat suitability for native species—topics of particular concern to the Penobscot Indian Nation , who have been protecting and managing the waterway for millennia. Parts of the Penobscot basin have been monitored by the USGS stream gage network, which covers larger streams and rivers but excludes many of the small streams found on tribal lands.
Read More