HOBO pH Logger
Features
- Rugged PVC housing for deployment in both freshwater and saltwater environments
- Quick and easy data offload via Bluetooth Low Energy (BLE) to iOS and Android devices
- Guided pH calibration following on-screen prompts in HOBOmobile app
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
Overview
The HOBO MX2501 pH and Temperature Data Logger is designed for long-term monitoring of pH in estuaries, lakes, streams, rivers, and oceans. Leveraging Bluetooth Low Energy (BLE) technology, the MX2501 pH Logger communicates wirelessly with the free HOBOmobile app on iOS and Android devices, making logger setup, calibration, and data offload quick and easy.
Mechanics
The guided pH calibration process on the HOBOmobile app makes an otherwise complicated process easier to follow. Dramatically cuts the time and effort needed to collect field data, while also offering higher resolution data.
Benefits
- Rugged PVC housing for deployment in both freshwater and saltwater environments
- Quick and easy data offload via Bluetooth Low Energy (BLE) to iOS and Android devices
- Water detection system for longer battery life and less maintenance
- Potentiometric pH electrode with plastic body, gel electrolyte, and double cloth junction
- User-replaceable battery, pH electrode, and anti-biofouling copper guard
- Accuracy of ±0.10 pH units within ±10°C of temperature at calibration
pH Sensor | ||
pH | mV | |
Range | 2.00 to 12.00 pH | -512 to 512 mV |
Accuracy | ±0.10 pH units within ±10°C of temperature at calibration | ±0.20 mV |
Resolution | 0.01 pH | 0.02 mV |
Response Time | 1 minute typical to 90% at constant temperature in stirred water | |
Sample Ionic Strength | ≥ 100 µS/cm | |
Temperature Sensor | ||
Range | -2° to 50°C (28.4° to 122°F) | |
Accuracy | ±0.2°C (±0.36°F) | |
Resolution | 0.024°C at 25°C (0.04°F at 77°F) | |
Response Time | 7 minutes typical to 90% in stirred water | |
Logger | ||
Operating Range | -2° to 50°C (28.4° to 122°F) — non-freezing | |
Buoyancy | Fresh water: 13.6 g (0.48 oz) negative Salt water: 19.6 g (0.69 oz) negative |
|
Waterproof | To 40 m (131.2 ft) | |
Water Detection | Water conductivity level of 100 µS/cm or greater is necessary for reliable detection of water. Deionized water or water below 100 µS/cm may not be detected. The water conductivity circuit may not reliably detect water that has frozen around the electrodes, i.e. below 0°C (32°F). |
|
Radio Power | 1 mW (0 dBm) | |
Transmission Range | Approximately 30.5 m (100 ft) line-of-sight in air | |
Wireless Data Standard | Bluetooth Low Energy (Bluetooth Smart) | |
Logging Rate | 1 second to 18 hours | |
Logging Modes | Fixed interval (normal, statistics) or burst | |
Memory Modes | Wrap when full or stop when full | |
Start Modes | Immediate, push button, date & time, or next interval | |
Stop Modes | When memory is full, push button, date & time, or after a set logging period | |
Time Accuracy | ±1 minute per month 0° to 50°C (32° to 122°F) | |
Battery Type | One AA 1.5 Volt, user-replaceable | |
Battery Life | 1 year typical at 25°C (77°F) with logging interval of 1 minute and Bluetooth Always On selected in software. 2 years typical at 25°C (77°F) with logging interval of 1 minute and Bluetooth Off Water Detect enabled in software. 3 years typical at 25°C (77°F) with logging interval of 1 minute and Bluetooth Always Off selected in software. Faster logging intervals and statistics sampling intervals, burst logging, remaining connected with the app, excessive downloads, and paging may impact battery life. |
|
pH Electrode Typical Minimum Life | 6 months in sample with ionic strength ≥ 100 µS/cm | |
Memory | 152 KB (43,300 measurements, maximum) | |
Full Memory Download Time | Approximately 60 seconds; may take longer the farther the mobile device is from the logger | |
Dimensions | 22.86 x 4.27 cm (9.0 x 1.68 inches); mounting hole 0.64 cm (0.25 inches) | |
Weight | 268.2 g (9.46 oz) | |
Wetted Materials | Logger: PVC housing and sensor end cap, polycarbonate closure caps and mounting end cap with a TPE switch pH electrode: plastic-bodied with Pellon® junctions and gel electrolyte, glass pH sensor bulb |
|
Environmental Rating | IP68 |
- MX2501 pH and Temperature Data Logger
- pH electrode
- Bottle of storage solution that can also be used as a storage container for the electrode
- Anti-biofouling copper guard
- Tube of silicone grease
- AA battery
In The News
Angler-Driven Citizen Science: Monitoring Black Bass Populations in Arkansas
In Arkansas, the rugged terrain of the Ozark and Ouachita Mountains dominates the north and west, eventually yielding to the vast, fertile flatlands of the Mississippi River Delta to the east. Hundreds of reservoirs and lakes punctuate the landscape, while swift streams snake through the valleys and hills, eventually giving way to the slow-moving rivers and bayous in the south. The waterways of the state are teeming with life. Black bass dominate most of these ecosystems and have drawn anglers for centuries. The most sought-after fish in one of the country's most prominent fishing states, Arkansas treasures its black bass populations.
Read MoreNew Buoy Boosts White Lake’s Water Quality Monitoring and Conservation
White Lake in Western Michigan is a vestige of North America’s glacial past, and gets its name from an interpretation of the Indian, “Wabish-Sippe,” meaning the river with white clay. The twin towns of Whitehall and Montague, which nestle on White Lake’s shore, have shared a close connection with the lake since their foundation–from the growth of the lumbering industry, to industrializsation, the expansion of tourism, and most recently, environmental protection. The White Lake Association (WLA) was founded in 1988 by residents concerned about proposed development at the lake’s northern end.
Read MoreFlow Photo Explorer: Studying Flows in the Penobscot River Basin
The flow dynamics of rivers and streams play an essential role in the chemical and physical functions of aquatic ecosystems. In Maine, varying flows in the Penobscot River Basin have impacted the health of the ecosystem, water resource use, and habitat suitability for native species—topics of particular concern to the Penobscot Indian Nation , who have been protecting and managing the waterway for millennia. Parts of the Penobscot basin have been monitored by the USGS stream gage network, which covers larger streams and rivers but excludes many of the small streams found on tribal lands.
Read More