Geolux Non-Contact Surface Velocity Sensor

The Geolux Non-Contact Surface Velocity Sensor uses radar technology for providing contactless measurement of velocity for water level, flood, and discharge monitoring applications.

Features

  • Contactless surface velocity measurement
  • RS-232, RS-485 Modbus, analog 4-20 mA interfaces in all models
  • Robust, small-size IP68 enclosure
Your Price $2,907.00
Stock 1AVAILABLE

Overview
The Geolux Non-Contact Surface Velocity Sensor uses radar technology for providing contactless measurement of velocity for water level, flood, and discharge monitoring applications.

Mechanics
Contactless radar technology enables quick and simple sensor installation above the water surface with minimum maintenance. The radar operates in K-band (24.075 GHz to 24.175 GHz) and provides velocity readings 10 times per second over serial RS-232, RS-485 Modbus, and analog 4-20 mA output. The instrument is easily integrated with third-party dataloggers and all of the settings can be remotely configured. An integrated MEMS sensor is used for automatic angle compensation. Internal vibration monitoring and SNR calculation can be used for measurement quality assessment.

General Specifications
Radar Type: K-band 24.075 GHz to 24.175 GHz Doppler radar, 20 dBm EIRP
Beam Angle: 12° Azimuth; 24° Elevation
Detection Distance: Up to 20m above the water
Speed Range: 0.02m/s to 15m/s
Resolution: 0.001m/s
Accuracy: 1%
Sampling Frequency: 10 samples per second
IP Rating: IP68

Electrical & Mechanical
Input Voltage: 9 to 27 VDC
Power Consumption: 950 mW operational, 85 mW standby
Max Current: < 250 mA
Temperature Range: -40 °C to +85 °C (without heating or coolers)
Device Outer Dimensions: 110mm x 90mm x 50mm

Interface
Serial Interface: 1 x serial RS-485 half-duplex; 1 x serial RS-232 (two wire interface)
Serial Baud Rate: 9600 bps to 115200 bps
Serial Protocols: GLX-NMEA, Modbus
Analog Output: 1 x 4-20 mA
Connector: M12 circular 12-pin

Certificates
EN 60950-1:2006+A1:2010+A11:2009+A12:2011+A2:2013
EN 62311:2008
EN 301 489-3 V2.1.1:2019
EN 301 489-1 V2.2.3:2019
EN 61000-6-2:2019
EN 61000-6-3:2021
EN 6100-6-2:2017
EN 300 440 V2.2.1:2018
EN 62368-1:2014+A11:2017
EN 62311:2008
EN 60529:2000+A1:2008+A2:2014 IP68
FCC Part 15 class B
ISED RSS210

Questions & Answers
No Questions
Did you find what you were looking for?

Select Options

  Products 0 Item Selected
Image
Part #
Description
Price
Stock
Quantity
Geolux Non-Contact Surface Velocity Sensor
RSS-2-300W
Non-contact radar surface velocity sensor, 15m range, 10m cable (mounting bracket sold separately)
$2,907.00
1 Available
  Accessories 0 Item Selected
Notice: At least 1 product is not available to purchase online
×
Multiple Products

have been added to your cart

There are items in your cart.

Cart Subtotal: $xxx.xx

Go to Checkout

In The News

Angler-Driven Citizen Science: Monitoring Black Bass Populations in Arkansas

In Arkansas, the rugged terrain of the Ozark and Ouachita Mountains dominates the north and west, eventually yielding to the vast, fertile flatlands of the Mississippi River Delta to the east. Hundreds of reservoirs and lakes punctuate the landscape, while swift streams snake through the valleys and hills, eventually giving way to the slow-moving rivers and bayous in the south. The waterways of the state are teeming with life. Black bass dominate most of these ecosystems and have drawn anglers for centuries. The most sought-after fish in one of the country's most prominent fishing states, Arkansas treasures its black bass populations.

Read More

New Buoy Boosts White Lake’s Water Quality Monitoring and Conservation

White Lake in Western Michigan is a vestige of North America’s glacial past, and gets its name from an interpretation of the Indian, “Wabish-Sippe,” meaning the river with white clay. The twin towns of Whitehall and Montague, which nestle on White Lake’s shore, have shared a close connection with the lake since their foundation–from the growth of the lumbering industry, to industrializsation, the expansion of tourism, and most recently, environmental protection. The White Lake Association (WLA) was founded in 1988 by residents concerned about proposed development at the lake’s northern end.

Read More

Flow Photo Explorer: Studying Flows in the Penobscot River Basin

The flow dynamics of rivers and streams play an essential role in the chemical and physical functions of aquatic ecosystems. In Maine, varying flows in the Penobscot River Basin have impacted the health of the ecosystem, water resource use, and habitat suitability for native species—topics of particular concern to the Penobscot Indian Nation , who have been protecting and managing the waterway for millennia. Parts of the Penobscot basin have been monitored by the USGS stream gage network, which covers larger streams and rivers but excludes many of the small streams found on tribal lands.

Read More