YSI ProDSS Ammonium Sensor
Features
- Measures NH4 in freshwater applications
- Depths not to exceed 17 meters (55 ft) or 25 psi
- 3 month warranty on sensing module
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
The ProDSS ion-selective electrode (ISE) ammonium sensor uses a silver/silver chloride wire electrode in a custom filling solution. The internal solution is separated from the sample medium by a polymer membrane, which selectively interacts with ammonium ions. When the sensor is immersed in water, a potential is established across the membrane that depends on the relative amounts of ions in the sample and the internal solution. This potential is read relative to the Ag/AgCl reference electrode.
Ammonium is calculated from the pH, salinity, and temperature readings. If a pH sensor is not in use, the instrument will assume the sample is neutral (pH 7) for the calculation. If a conductivity sensor (salinity) is not in use, the instrument will use the salinity correction value entered in the ammonium sensor calibration screen for the calculation.
ProDSS Smart Sensor Specifications:
Parameter |
Range | Accuracy* | Resolution |
---|---|---|---|
Conductivity |
0 to 200 mS/cm |
From 100 to 200 mS/cm: ± 1% |
**0.001, 0.01 or 0.1 µS/cm |
Temperature |
-5 to 70 °C |
± 0.2 °C |
0.1 °C or 0.1 °F |
Dissolved Oxygen |
0 to 50 mg/L |
From 0 to 20 mg/L: ± 1% From 20 to 50 mg/L: ± 8% |
0.01 mg/L or 0.1 mg/L |
pH |
0 to 14 |
± 0.2 |
0.01 |
ORP |
-1999 to 1999 mV |
± 20 mV |
0.1 mV |
Turbidity |
0 to 4000 FNU |
From 0 to 999 FNU: ± 2% From 1000 to 4000 FNU: ± 5% |
0.1 FNU |
Freshwater Total Algae |
0 to 100 µg/L PC |
r2 = 0.999 |
0.01 µg/L PC |
Saltwater Total Algae |
0 to 280 µg/L PE |
r2 = 0.999 |
0.01 µg/L PE |
Nitrate |
0 to 200 mg/L |
± 10% |
0.01 mg/L |
Ammonium |
0 to 200 mg/L |
± 10% |
0.01 mg/L |
Chloride |
0 to 1000 mg/L Cl |
± 15% |
0.01 mg/L |
*Reference specification for each sensor for more details on accuracy
** Range dependent
In The News
Angler-Driven Citizen Science: Monitoring Black Bass Populations in Arkansas
In Arkansas, the rugged terrain of the Ozark and Ouachita Mountains dominates the north and west, eventually yielding to the vast, fertile flatlands of the Mississippi River Delta to the east. Hundreds of reservoirs and lakes punctuate the landscape, while swift streams snake through the valleys and hills, eventually giving way to the slow-moving rivers and bayous in the south. The waterways of the state are teeming with life. Black bass dominate most of these ecosystems and have drawn anglers for centuries. The most sought-after fish in one of the country's most prominent fishing states, Arkansas treasures its black bass populations.
Read MoreNew Buoy Boosts White Lake’s Water Quality Monitoring and Conservation
White Lake in Western Michigan is a vestige of North America’s glacial past, and gets its name from an interpretation of the Indian, “Wabish-Sippe,” meaning the river with white clay. The twin towns of Whitehall and Montague, which nestle on White Lake’s shore, have shared a close connection with the lake since their foundation–from the growth of the lumbering industry, to industrializsation, the expansion of tourism, and most recently, environmental protection. The White Lake Association (WLA) was founded in 1988 by residents concerned about proposed development at the lake’s northern end.
Read MoreFlow Photo Explorer: Studying Flows in the Penobscot River Basin
The flow dynamics of rivers and streams play an essential role in the chemical and physical functions of aquatic ecosystems. In Maine, varying flows in the Penobscot River Basin have impacted the health of the ecosystem, water resource use, and habitat suitability for native species—topics of particular concern to the Penobscot Indian Nation , who have been protecting and managing the waterway for millennia. Parts of the Penobscot basin have been monitored by the USGS stream gage network, which covers larger streams and rivers but excludes many of the small streams found on tribal lands.
Read More