YSI ProDSS Optical Dissolved Oxygen Sensor
Features
- 0 to 50 mg/L measurement range
- T63<5 sec response time
- ±0.1 mg/L or 1% of reading accuracy from 0 to 20 mg/L
- Free ground shipping
- Expedited repair and warranty service
- Lifetime technical support
- More
The YSI ProDSS optical dissolved oxygen sensor is a digital smart sensor featuring welded titanium construction for use with the ProDIGITAL family of instruments. Compatible instruments include the ProDSS Meter, ProSwap Meter, and ProSwap Logger.
The principle of operation of the ProDSS optical dissolved oxygen sensor is based on the well-documented concept that dissolved oxygen quenches both the intensity and the lifetime of the luminescence associated with a carefully chosen chemical dye. The ProDSS DO sensor operates by shining a blue light of the proper wavelength on this luminescent dye which is immobilized in a matrix and formed into a disk. The blue light causes the immobilized dye to luminesce and the lifetime of this dye luminescence is measured via a photodiode in the probe. To increase the accuracy and stability of the technique, the dye is also irradiated with red light during part of the measurement cycle to act as a reference in the determination of the luminescence lifetime.
When there is no oxygen present, the lifetime of the signal is maximal; as oxygen is introduced to the membrane surface of the sensor, the lifetime becomes shorter. Thus, the lifetime of the luminescence is inversely proportional to the amount of oxygen present and the relationship between the oxygen pressure outside the sensor and the lifetime can be quantified by the Stern-Volmer equation: ((Tzero/T) – 1) versus O2 pressure. For most lifetime-based optical DO sensors, this Stern-Volmer relationship is not strictly linear (particularly at higher oxygen pressures) and the data must be processed using analysis by polynomial non-linear regression. Fortunately, the non-linearity does not change significantly with time so that, as long as each sensor is characterized with regard to its response to changing oxygen pressure, the curvature in the relationship does not affect the ability of the sensor to accurately measure oxygen for an extended period of time.
ProDSS Smart Sensor Specifications:
Parameter |
Range | Accuracy* | Resolution |
---|---|---|---|
Conductivity |
0 to 200 mS/cm |
From 100 to 200 mS/cm: ± 1% |
**0.001, 0.01 or 0.1 µS/cm |
Temperature |
-5 to 70 °C |
± 0.2 °C |
0.1 °C or 0.1 °F |
Dissolved Oxygen |
0 to 50 mg/L |
From 0 to 20 mg/L: ± 1% From 20 to 50 mg/L: ± 8% |
0.01 mg/L or 0.1 mg/L |
pH |
0 to 14 |
± 0.2 |
0.01 |
ORP |
-1999 to 1999 mV |
± 20 mV |
0.1 mV |
Turbidity |
0 to 4000 FNU |
From 0 to 999 FNU: ± 2% From 1000 to 4000 FNU: ± 5% |
0.1 FNU |
Freshwater Total Algae |
0 to 100 µg/L PC |
r2 = 0.999 |
0.01 µg/L PC |
Saltwater Total Algae |
0 to 280 µg/L PE |
r2 = 0.999 |
0.01 µg/L PE |
Nitrate |
0 to 200 mg/L |
± 10% |
0.01 mg/L |
Ammonium |
0 to 200 mg/L |
± 10% |
0.01 mg/L |
Chloride |
0 to 1000 mg/L Cl |
± 15% |
0.01 mg/L |
*Reference specification for each sensor for more details on accuracy
** Range dependent
In The News
Angler-Driven Citizen Science: Monitoring Black Bass Populations in Arkansas
In Arkansas, the rugged terrain of the Ozark and Ouachita Mountains dominates the north and west, eventually yielding to the vast, fertile flatlands of the Mississippi River Delta to the east. Hundreds of reservoirs and lakes punctuate the landscape, while swift streams snake through the valleys and hills, eventually giving way to the slow-moving rivers and bayous in the south. The waterways of the state are teeming with life. Black bass dominate most of these ecosystems and have drawn anglers for centuries. The most sought-after fish in one of the country's most prominent fishing states, Arkansas treasures its black bass populations.
Read MoreNew Buoy Boosts White Lake’s Water Quality Monitoring and Conservation
White Lake in Western Michigan is a vestige of North America’s glacial past, and gets its name from an interpretation of the Indian, “Wabish-Sippe,” meaning the river with white clay. The twin towns of Whitehall and Montague, which nestle on White Lake’s shore, have shared a close connection with the lake since their foundation–from the growth of the lumbering industry, to industrializsation, the expansion of tourism, and most recently, environmental protection. The White Lake Association (WLA) was founded in 1988 by residents concerned about proposed development at the lake’s northern end.
Read MoreFlow Photo Explorer: Studying Flows in the Penobscot River Basin
The flow dynamics of rivers and streams play an essential role in the chemical and physical functions of aquatic ecosystems. In Maine, varying flows in the Penobscot River Basin have impacted the health of the ecosystem, water resource use, and habitat suitability for native species—topics of particular concern to the Penobscot Indian Nation , who have been protecting and managing the waterway for millennia. Parts of the Penobscot basin have been monitored by the USGS stream gage network, which covers larger streams and rivers but excludes many of the small streams found on tribal lands.
Read More